dinsdag 5 juni 2007

College 11 (deel 4)

By analysing the top-scoring strategies, Axelrod stated several conditions necessary for a strategy to be successful.

Nice
The most important condition is that the strategy must be "nice", that is, it will not defect before its opponent does. Almost all of the top-scoring strategies were nice. Therefore a purely selfish strategy for purely selfish reasons will never hit its opponent first.

Retaliating
However, Axelrod contended, the successful strategy must not be a blind optimist. It must always retaliate. An example of a non-retaliating strategy is Always Cooperate. This is a very bad choice, as "nasty" strategies will ruthlessly exploit such softies.

Forgiving
Another quality of successful strategies is that they must be forgiving. Though they will retaliate, they will once again fall back to cooperating if the opponent does not continue to play defects. This stops long runs of revenge and counter-revenge, maximizing points.

Non-envious
The last quality is being non-envious, that is not striving to score more than the opponent (impossible for a 'nice' strategy, i.e., a 'nice' strategy can never score more than the opponent). Therefore, Axelrod reached the Utopian-sounding conclusion that selfish individuals for their own selfish good will tend to be nice and forgiving and non-envious. One of the most important conclusions of Axelrod's study of IPDs is that Nice guys can finish first.

The optimal (points-maximizing) strategy for the one-time PD game is simply defection; as explained above, this is true whatever the composition of opponents may be. However, in the iterated-PD game the optimal strategy depends upon the strategies of likely opponents, and how they will react to defections and cooperations. For example, consider a population where everyone defects every time, except for a single individual following the Tit-for-Tat strategy. That individual is at a slight disadvantage because of the loss on the first turn. In such a population, the optimal strategy for that individual is to defect every time. In a population with a certain percentage of always-defectors and the rest being Tit-for-Tat players, the optimal strategy for an individual depends on the percentage, and on the length of the game.

Geen opmerkingen: